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Abstract This paper develops new methods based on the
preference ranking organization method for enrichment eval-
uations (PROMETHEE) that use a signed distance-based
approach within the environment of interval type-2 fuzzy
sets for multiple criteria decision analysis. The theory of
interval type-2 fuzzy sets provides an intuitive and computa-
tionally feasible way of addressing uncertain and ambigu-
ous information in decision-making fields. Many studies
have developed multiple criteria decision analysis meth-
ods in the context of interval type-2 fuzzy sets; most of
these methods can be characterized as scoring or compro-
mising models. Nevertheless, the extended versions of out-
ranking methods have not been thoroughly investigated. This
paper establishes interval type-2 fuzzy PROMETHEE meth-
ods for ranking alternative actions among multiple criteria
based on the concepts of signed distance-based generalized
criteria and comprehensive preference indices. We develop
interval type-2 fuzzy PROMETHEE I and interval type-
2 fuzzy PROMETHEE II procedures for partial and com-
plete ranking, respectively, of the alternatives. Finally, the
feasibility and applicability of the proposed methods are
illustrated by a practical problem of landfill site selection.
A comparative analysis is also performed with ordinary fuzzy
PROMETHEE methods to validate the effectiveness of the
proposed methodology.
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1 Introduction

The preference ranking organization method for enrichment
evaluations (PROMETHEE), which was introduced by Brans
(1982), is a well-known and widely used outranking method
for multiple criteria decision analysis (MCDA). Consider-
ing the selection of a finite set of alternative actions among
(conflicting) criteria, the PROMETHEE methods incorporate
pairwise comparisons and outranking relationships for selec-
tion of the best criteria. PROMETHEE is also a simple rank-
ing method for conception and application compared with
other methods for solving multiple-criteria evaluation prob-
lems (Brans et al. 1986). The PROMETHEE methods com-
pute positive and negative preference flows for each alter-
native and facilitate the selection of a final alternative by
the decision maker (Peng et al. 2011). The positive pref-
erence flow indicates how an alternative outranks all other
alternatives, and the negative preference flow indicates how
an alternative is outranked by all other alternatives (Brans
and Mareschal 2005). PROMETHEE has been successfully
applied to many MCDA problems; its effectiveness is due to
its solid mathematical properties and its ease of use (Brans
and Mareschal 2005; Behzadian et al. 2010; Hsu and Lin
2012).

The PROMETHEE family of outranking methods encom-
passes PROMETHEE I for partial ranking of alternatives
(Brans 1982), PROMETHEE II for complete ranking of alter-
natives (Brans 1982), PROMETHEE III for ranking of alter-
natives based on intervals (Brans et al. 1984), PROMETHEE
IV for continuous cases (Brans et al. 1984), PROMETHEE V
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for problems with segmentation constraints (Brans and
Mareschal 1992), PROMETHEE VI for human brain repre-
sentation (Brans and Mareschal 1995), PROMETHEE GAIA
for geometrical analysis of interactive aid (Mareschal and
Brans 1988; Brans and Mareschal 1994), PROMETHEE
GDSS for a group decision support system (Macharis et
al. 1998), PROMETHEE TRI for dealing with sorting
problems (Figueira et al. 2004), PROMETHEE CLUS-
TER for nominal classification (Figueira et al. 2004), and
PROMETHEE GKS for robust ordinal regression (Kadziński
et al. 2012), among other methods. Currently, methodolo-
gies of the PROMETHEE family and their applications
have attracted considerable attention in the multiple criteria
decision-making field.

The PROMETHEE methodologies have been extended
to the fuzzy environment. Fernandez-Castro and Jimenez
(2005) presented a methodological contribution related to
PROMETHEE V, which suggests that some constraints are
soft and some coefficients are estimated by fuzzy numbers.
Zhang et al. (2009) used fuzzy PROMETHEE to conduct a
comparative approach for ranking contaminated sites based
on a risk assessment paradigm. Considering the fuzziness in
the decision data, Li and Li (2010) presented a new exten-
sion of PROMETHEE II based on generalized fuzzy num-
bers. Chen et al. (2011) presented a fuzzy PROMETHEE
method to evaluate outsourcing suppliers. By employing
fuzzy numbers, Yilmaz and Dağdeviren (2011) combined
F-PROMETHEE and a zero-one goal programming model
to address the problem of equipment selection. Abedi et al.
(2012) considered fuzzy scores expressed by fuzzy mem-
bership functions to explore porphyry copper deposits using
PROMETHEE II. Hsu and Lin (2012) combined the concepts
of fuzzy sets to represent the uncertain information in intrin-
sic risks with PROMETHEE to explore group package tours
based on risk perception. Taha and Rostam (2012) developed
a hybrid fuzzy AHP-PROMETHEE decision support system
for machine tool selection.

Uncertain and imprecise assessment information is com-
mon in many practical MCDA situations because certain
decision makers may express their judgments using linguis-
tic terms (Hatami-Marbini and Tavana 2011). Due to a lack
of data, time pressure, or decision makers’ limited attention
and information-processing capabilities, the decision makers
often make their decisions within linguistic environments in
real-world problems (Su 2011; Chen 2012a; Rajpathak et
al. 2012). In this regard, interval type-2 fuzzy sets (IT2FSs)
are very useful for conveniently modeling impressions and
quantifying the ambiguous nature of linguistic judgments.
IT2FSs efficiently express linguistic evaluations because they
provide great flexibility to present uncertainties (Chen and
Lee 2010a; Zhang and Zhang 2013). Based on the interval
type-2 fuzzy framework, Chen and Chen (2009); Wei and
Chen (2009), and (Chen 2011a,b, 2012a,b) presented a type-

2 fuzzy linguistic system that contains nine-point linguis-
tic rating scales and the corresponding interval type-2 trape-
zoidal fuzzy numbers (IT2TrFNs) required for measuring the
importance weights and the alternative ratings. Other useful
type-2 fuzzy linguistic systems for IT2FSs include seven-
point scales (Chen and Lee 2010a; Hosseini and Tarokh
2011; Chen et al. 2012; Gilan et al. 2012; Wang et al. 2012),
five-point scales (Chen and Lee 2010b; Hosseini and Tarokh
2011), four-point scales (Chen and Lee 2010b), and three-
point scales (Chen and Lee 2010b; Hosseini and Tarokh 2011;
Zhai and Mendel 2011; Han and Mendel 2012). With the aid
of type-2 fuzzy linguistic systems, the IT2FS theory has been
conveniently applied in practical multiple criteria decision-
making problems (Zhai and Mendel 2011; Chen 2012b; Gilan
et al. 2012; Wang et al. 2012).

Most extensions of the fuzzy PROMETHEE methods,
such as the employment of fuzzy numbers, have been dis-
cussed within the decision environment of ordinary fuzzy
sets. However, little attention has been given to the devel-
opment of PROMETHEE methods based on IT2FSs. Many
useful methods have been proposed for solving various
MCDA problems (Hosseini and Tarokh 2011; Chen 2011a,b,
2012a,b; Acampora et al. 2012; Chen et al. 2012; Wang et al.
2012). For example, Chen (2011b) presented an integrated
approach to combining objective and subjective importance
values of criteria with IT2FSs. Wang et al. (2012) developed
an approach to handling multiple criteria group decision-
making problems in which the criterion values are charac-
terized by IT2FSs and the information about the criterion
weights is partially known. Chen (2012b) constructed an
integrated programming model to estimate the optimal cri-
terion weights from incomplete and inconsistent preference
information and to determine the closeness coefficient val-
ues for therapy rankings in cancer care. Das et al. (2012)
improved the accuracy of a fuzzy expert decision-making
system by tuning the parameters of type-2 sigmoid member-
ship functions of fuzzy input variables and determining the
most appropriate membership function; they then applied the
proposed method to a medical diagnostic decision-making
system. Chen et al. (2013) developed an extended QUAL-
IFLEX method for handling MCDA problems in the context
of IT2FSs and applied it to a medical decision-making prob-
lem. Baležentis and Zeng (2013) extended MULTIMOORA
by using generalized interval-valued trapezoidal fuzzy num-
bers to facilitate group decision making in the IT2FS frame-
work. Zhang and Zhang (2013) used trapezoidal interval
type-2 fuzzy soft sets to propose a multiple criteria group
decision-making method. A number of studies have devel-
oped MCDA methods in the context of IT2FSs, but the
PROMETHEE methodologies are less developed in IT2FS
settings. Considering the usefulness of type-2 fuzzy linguis-
tic systems in decision making, we conducted this study to
construct new interval type-2 fuzzy PROMETHEE methods,
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which are different from the existing MCDA methods within
the IT2FS environment (e.g., the integrated programming
models introduced by Chen 2011b, 2012b). On the basis of
the IT2FS framework, this paper employs the popular fuzzy
numbers with trapezoidal forms (as employed by Baležentis
and Zeng 2013; Chen et al. 2013; Zhang and Zhang 2013,
etc.), here named IT2TrFNs, to establish core PROMETHEE
procedures using the concept of signed distances between
IT2TrFNs.

The purpose of this paper is to develop interval type-2
fuzzy PROMETHEE methods for managing MCDA prob-
lems within the IT2FS environment. Classical PROMETHEE
is generally implemented according to three main proce-
dures: construction of generalized criteria, determination of
an outranking relation on the set of alternatives, and eval-
uation of this relation to determine the priority order of
the alternatives (Brans et al. 1984). Because the aggrega-
tion operations of uncertain linguistic terms can be deter-
mined through the operations of trapezoidal fuzzy numbers
(Suo et al. 2012), we employ a type-2 fuzzy rating system
(Chen 2011a,b, 2012a) consisting of nine-point linguistic
rating scales and their corresponding IT2TrFNs to measure
importance weights and alternative ratings. In addition to
considering the context of IT2FSs in this study, we apply
the concept of signed distances to establish new preference
functions. Furthermore, several basic signed distance-based
generalized criteria, which consist of the usual criterion, U-
shaped criterion, V-shaped criterion, level criterion, V-shaped
with indifference criterion, and Gaussian criterion, are pro-
vided to facilitate the determination of signed distance-based
comprehensive preference indices (i.e., multiple criteria pref-
erence indices). Using an interval type-2 fuzzy framework,
this study employs IT2TrFNs to propose extended definitions
of leaving flows, entering flows, and net flows for the con-
struction of relevant measures of outranking and outranked
relations. Because PROMETHEE I and II are the most widely
used methods among the PROMETHEE methodologies, this
study establishes the interval type-2 fuzzy PROMETHEE I
and interval type-2 fuzzy PROMETHEE II methods for par-
tial ranking and complete ranking, respectively, of the alter-
natives. Finally, the feasibility and applicability of the pro-
posed interval type-2 fuzzy PROMETHEE I and II methods
are examined with a practical MCDA problem of landfill
site selection. We also conduct a comparative analysis with
ordinary fuzzy PROMETHEE methods to validate the effec-
tiveness of the developed method.

This paper is organized as follows: Section 2 formulates an
MCDA problem within an IT2FS framework and describes
the concept of signed distances. Section 3 develops inter-
val type-2 fuzzy PROMETHEE I and II outranking meth-
ods to handle MCDA problems with IT2TrFNs. Section 4
demonstrates the feasibility and applicability of the pro-
posed methodology by applying it to a landfill site selection

problem and conducting a comparative analysis with fuzzy
PROMETHEE. Section 5 presents the conclusions. The con-
cepts of IT2FSs and IT2TrFNs are used extensively through-
out this paper. Several relevant definitions and operations of
IT2FSs are briefly reviewed in the Appendix.

2 Preliminaries

This section establishes an MCDA problem within the IT2FS
environment. It also describes the concept of signed distances
among IT2TrFNs and provides a signed distance-based
approach for determining the ordering of IT2TrFN values.

2.1 An MCDA problem defined for IT2FSs

The methods for evaluating alternatives and providing pref-
erence information about criteria are often guided by the
subjective judgments of the decision maker. Most linguistic
scales used in the context of IT2FSs (Chen and Lee 2010b;
Hosseini and Tarokh 2011; Chen 2011a,b, 2012a; Chen et al.
2012; Gilan et al. 2012; Han and Mendel 2012; Wang et al.
2012) are based on a unipolar univariate model. Therefore,
nonnegative IT2FSs are employed throughout this paper as a
result of the common use of a unipolar setting in the linguistic
rating system. In this paper, we adopt the nine-point linguis-
tic rating scales presented by Chen (2011a, 2012a) to achieve
better sensitivity when measuring variability in responses, as
shown in Table 1. According to Chen (2011a, 2012a), there
are nine translations of linguistic terms into IT2TrFNs; thus,
the linguistic variables can be easily converted to IT2TrFNs.

Consider the following MCDA problem in which the
ratings of alternative evaluations and criterion importance
are expressed as IT2TrFNs. First, define the alternative set

Table 1 Linguistic variables and their corresponding IT2TrFNs

Linguistic terms IT2TrFNs

Absolutely high (AH) [(1.0, 1.0, 1.0, 1.0; 1.0), (1.0, 1.0, 1.0, 1.0;
1.0)]

Very high (VH) [(0.9475, 0.985, 0.9925, 0.9925; 0.8),
(0.93, 0.98, 1.0, 1.0; 1.0)]

High (H) [(0.7825, 0.815, 0.885, 0.9075; 0.8),
(0.72, 0.78, 0.92, 0.97; 1.0)]

Medium high (MH) [(0.65, 0.6725, 0.7575, 0.79; 0.8), (0.58,
0.63, 0.80, 0.86; 1.0)]

Medium (M) [(0.4025, 0.4525, 0.5375, 0.5675; 0.8),
(0.32, 0.41, 0.58, 0.65; 1.0)]

Medium low (ML) [(0.2325, 0.255, 0.325, 0.3575; 0.8),
(0.17, 0.22, 0.36, 0.42; 1.0)]

Low (L) [(0.0875, 0.12, 0.16, 0.1825; 0.8), (0.04,
0.10, 0.18, 0.23; 1.0)]

Very low (VL) [(0.0075, 0.0075, 0.015, 0.0525; 0.8),
(0.0, 0.0, 0.02, 0.07; 1.0)]

Absolutely low (AL) [(0.0, 0.0, 0.0, 0.0; 1.0), (0.0, 0.0, 0.0, 0.0;
1.0)]
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Z = {z1, z2, . . . , zm} from which the decision maker must
choose. Next, define X = {x1, x2, . . . , xn} as the criterion
set that contains the criteria by which the alternative perfor-
mances are measured. The set X can generally be divided
into two sets, Xb and Xc, where Xb denotes a collection of
benefit criteria (i.e., larger values of x j indicate a greater pref-
erence); Xc denotes a collection of cost criteria (i.e., smalle
values of x j indicate a greater preference); and Xb ∩ Xc =∅

and Xb ∪ Xc=X .
Each alternative is evaluated with respect to each of the n

criteria that is based on the experience and subjective judg-
ments of the decision maker, and the assessment is expressed
as a non-negative IT2TrFN. Let Ai j denote the evaluative rat-
ing of alternative zi ∈ Z with respect to criterion x j ∈ X with
Ai j expressed as

Ai j = [AL
i j , AU

i j ]

=
[(

aL
1i j , aL

2i j , aL
3i j , aL

4i j ; hL
i j

)
,

(
aU

1i j , aU
2i j , aU

3i j , aU
4i j ; hU

i j

)]
,

(1)

where 0 ≤ aL
1i j ≤ aL

2i j ≤ aL
3i j ≤ aL

4i j , 0 ≤ aU
1i j ≤

aU
2i j ≤ aU

3i j ≤ aU
4i j , aU

1i j ≤ aL
1i j , aL

4i j ≤ aU
4i j , and

0 < hL
i j ≤ hU

i j ≤ 1 (see Fig. 1). In this context, AL
i j =

(aL
1i j , aL

2i j , aL
3i j , aL

4i j ; hL
i j ) and AU

i j = (aU
1i j , aU

2i j , aU
3i j , aU

4i j ;
hU

i j ) denote the lower and upper extremes, respectively, of

the IT2TrFN Ai j , where AL
i j ⊂ AU

i j . For i = 1, 2, . . . , m, the
characteristic of alternative zi is represented in the following
manner:

Ai = {〈x j , Ai j
〉 ∣∣x j ∈ X, j = 1, 2, . . . , n

}
. (2)

Similarly, the importance weight W j of criterion x j ∈ X
provided by the decision maker is expressed as

W j = [W L
j , W U

j ]

=
[(

wL
1 j , w

L
2 j , w

L
3 j , w

L
4 j ; hL

j

)
,

(
wU

1 j , w
U
2 j , w

U
3 j , w

U
4 j ; hU

j

)]
,

(3)

Fig. 1 A geometrical interpretation of an IT2TrFN Ai j

where 0 ≤ wL
1 j ≤ wL

2 j ≤ wL
3 j ≤ wL

4 j , 0 ≤ wU
1 j ≤ wU

2 j ≤
wU

3 j ≤ wU
4 j , wU

1 j ≤ wL
1 j , wL

4 j ≤ wU
4 j , and 0 < hL

j ≤ hU
j ≤

1. Additionally, W L
j = (wL

1 j , w
L
2 j , w

L
3 j , w

L
4 j ; hL

j ) and W U
j =

(wU
1 j , w

U
2 j , w

U
3 j , w

U
4 j ; hU

j ), where W L
j ⊂ W U

j . An IT2TrFN
W is defined as follows:

W = {〈x j , W j
〉 ∣∣x j ∈ X, j = 1, 2, . . . , n

}
. (4)

2.2 Signed distance-based approach

In this study, we use a simple and effective procedure that is
based on signed distances to define the ordering of IT2TrFNs.
The concept of signed distances, which are also referred to
as oriented distances or directed distances, can be used to
determine rankings of fuzzy numbers (Chiang 2001; Chen
and Ouyang 2006). Despite the multiple ranking methods, no
decision maker is able to consistently rank fuzzy numbers by
using human intuition in all cases (Abbasbandy and Asady
2006). Certain limitations were discovered when ranking
fuzzy numbers by the following methods: the coefficient of
variation, the distance between fuzzy sets, the centroid point
and the original point, and the weighted mean value (Yao and
Wu 2000; Abbasbandy and Asady 2006). The signed dis-
tance method is capable of effectively ranking various fuzzy
numbers and their images (Yao and Wu 2000). The signed
distance method calculations are also less complicated than
the signed distance method calculations of other approaches
(Abbasbandy and Asady 2006). The signed distance method
can use both positive and negative values to define the order-
ing of fuzzy numbers. Therefore, this paper employs a signed
distance-based approach to compare the IT2TrFN values.

Consider the IT2TrFN rating Ai j of the alternative zi on
the criterion x j . Let Ai j (α) (=[AL

i j (α), AU
i j (α)]) be the inter-

vals of confidence for the level of presumption of α (i.e., the
α-cut), where α ∈ [0, 1]. The α-cut of Ai j is denoted as

Ai j (α)

=
⎧⎨
⎩
[
[l AL

i j (α), r AL
i j (α)], [l AU

i j (α), r AU
i j (α)]

]
if 0 ≤ α < hL

i j ,[
l AU

i j (α), r AU
i j (α)

]
if hL

i j ≤ α ≤ hU
i j ,

(5)

where l AL
i j (α) and l AU

i j (α) are the left-hand points of the

α-cut, and r AL
i j (α) and r AU

i j (α) are the right-hand points
of the α-cut. Figures 2 and 3 provide convenient geometric
interpretations of the left- and right-hand points of the α-cut
of Ai j for 0 ≤ α < hL

i j and hL
i j ≤ α ≤ hU

i j , respectively. Let

ξ ∈ {L , U }. For each ξ, l Aξ
i j (α) and r Aξ

i j (α) are calculated
by the following:

l Aξ
i j (α) = aξ

1i j + (aξ
2i j − aξ

1i j )α

hξ
i j

, (6)
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Fig. 2 The α-cut of an IT2TrFN Ai j for 0 ≤ α < hL
i j .

Fig. 3 The α-cut of an IT2TrFN Ai j for hL
i j ≤ α ≤ hU

i j .

r Aξ
i j (α) = aξ

4i j − (aξ
4i j − aξ

3i j )α

hξ
i j

. (7)

With respect to the confidence interval at the α level
([l AL

i j (α), r AL
i j (α)] and [l AU

i j (α), r AU
i j (α)]), the respective

α-level fuzzy interval [l Aξ
i j (α)α, r Aξ

i j (α)α] for each ξ ∈
{L , U } is defined as follows:

[l Aξ
i j (α)α, r Aξ

i j (α)α](x j )

=
{

α if l Aξ
i j (α) ≤ x j ≤ r Aξ

i j (α),

0 otherwise.
(8)

Let the level 1 fuzzy number 0̃1 map onto the vertical
axis at the origin. The signed distance of the crisp interval,
[l AU

i j (α), r AU
i j (α)], to 0̃1 is computed as follows:

d

([
l AU

i j (α), r AU
i j (α)

]
, 0̃1

)
= 1

2

(
d

(
l AU

i j (α), 0̃1

)

+d

(
r AU

i j (α), 0̃1

))
. (9)

The α-cut, [l AU
i j (α), r AU

i j (α)], is the one-one and onto map-

ping of the α-level fuzzy interval, [l AU
i j (α)α, r AU

i j (α)α].
Thus, the signed distance from the α-level fuzzy interval
[l AU

i j (α)α, r AU
i j (α)α] to 0̃1 is calculated as

d

([
l AU

i j (α)α, r AU
i j (α)α

]
, 0̃1

)

= 1

2

(
aU

1i j + aU
4i j +

(
aU

2i j + aU
3i j − aU

1i j − aU
4i j

)
α

hU
i j

)
,

(10)

where d is a continuous function of α on [0, hU
i j ]. The signed

distance from AU
i j to 0̃1 can be derived by the following def-

inite integral:

d

(
AU

i j , 0̃1

)

= 1

hU
i j

hU
i j∫

0

1

2

(
aU

1i j +aU
4i j +

(
aU

2i j +aU
3i j −aU

1i j − aU
4i j

) α

hU
i j

)
dα

= 1

4

(
aU

1i j + aU
2i j + aU

3i j + aU
4i j

)
. (11)

Therefore, the signed distances from the crisp intervals,
[l AU

i j (α), l AL
i j (α)] and [r AL

i j (α), r AU
i j (α)], to 0̃1 can be cal-

culated separately as

d

([
l AU

i j (α), l AL
i j (α)

]
, 0̃1

)

= 1

2

(
d
(

l AU
i j (α), 0̃1

)
+ d
(

l AL
i j (α), 0̃1

))

= 1

2

(
aL

1i j + aU
1i j +

(
aL

2i j − aL
1i j

) α

hL
i j

+
(

aU
2i j − aU

1i j

) α

hU
i j

)
,

(12)

d

([
r AL

i j (α), r AU
i j (α)

]
, 0̃1

)

= 1

2

(
d
(

r AL
i j (α), 0̃1

)
+ d
(

r AU
i j (α), 0̃1

))

= 1

2

(
aL

4i j +aU
4i j +

(
aL

3i j − aL
4i j

) α

hL
i j

+
(

aU
3i j − aU

4i j

) α

hU
i j

)
.

(13)

In addition,

d
([

l AU
i j (α), l AL

i j (α)
]

∪
[

r AL
i j (α), r AU

i j (α)
]
, 0̃1

)

= 1

2

(
d
([

l AU
i j (α), l AL

i j (α)
]
, 0̃1

)
+d
([

r AL
i j (α), r AU

i j (α)
]
, 0̃1

))
.

(14)

The α-cuts [l AU
i j (α), l AL

i j (α)] and [r AL
i j (α), r AU

i j (α)] are the
one-one and onto mappings of the α-level fuzzy intervals
[l AU

i j (α)α, l AL
i j (α)α] and [r AL

i j (α)α, r AU
i j (α)α]. The signed
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distances from theα-level fuzzy intervals [lAU
i j (α)α, l AL

i j (α)α]
∪ [r AL

i j (α)α, r AU
i j (α)α] to 0̃1 are expressed as

d
([

l AU
i j (α)α, l AL

i j (α)α

]
∪
[

r AL
i j (α)α, r AU

i j (α)α

]
, 0̃1

)

= 1

4

(
aL

1i j + aU
1i j + aL

4i j + aU
4i j +

(
aL

2i j + aL
3i j − aL

1i j

−aL
4i j

)
α

hL
i j

+
(

aU
2i j + aU

3i j − aU
1i j − aU

4i j

) α

hU
i j

)
, (15)

where d is a continuous function of α on [0, hL
i j ]. When

0 ≤ α < hL
i j , the average value of d can be obtained by the

following definite integral:

1

hL
i j

hL
i j∫

0

d
([

l AU
i j (α)α, l AL

i j (α)α

]
∪
[

r AL
i j (α)α, r AU

i j (α)α

]
, 0̃1

)
dα

= 1

8

(
aL

1i j + aL
2i j + aL

3i j + aL
4i j + 2aU

1i j + 2aU
4i j

+
(

aU
2i j + aU

3i j − aU
1i j − aU

4i j

)hL
i j

hU
i j

)
. (16)

when hL
i j ≤ α < hU

i j , the average value of d is as follows:

1

hU
i j − hL

i j

hU
i j∫

hL
i j

d
([

l AU
i j (α)α, r AU

i j (α)α

]
, 0̃1

)
dα

= 1

hU
i j − hL

i j

hU
i j∫

hL
i j

1

2

(
aU

1i j + aU
4i j

+
(

aU
2i j + aU

3i j−aU
1i j − aU

4i j

) α

hU
i j

)
dα

= 1

4

(
aU

1i j + aU
2i j + aU

3i j + aU
4i j

+
(

aU
2i j + aU

3i j−aU
1i j − aU

4i j

)hL
i j

hU
i j

)
. (17)

Therefore, the signed distance from Ai j to 0̃1 (for 0 < hL
i j ≤

hU
i j ≤ 1) is as follows:

d(Ai j , 0̃1)

= 1

hL
i j

hL
i j∫

0

d
([

l AU
i j (α)α, l AL

i j (α)α

]
∪
[

r AL
i j (α)α, rAU

i j (α)α

]
, 0̃1

)
dα

+ 1

hU
i j − hL

i j

hU
i j∫

hL
i j

d
([

l AU
i j (α)α, r AU

i j (α)α

]
, 0̃1

)
dα

= 1

8

(
aL

1i j + aL
2i j + aL

3i j + aL
4i j + 4aU

1i j + 2aU
2i j + 2aU

3i j

+ 4aU
4i j + 3

(
aU

2i j + aU
3i j − aU

1i j − aU
4i j

) hL
i j

hU
i j

)
. (18)

If 0 < hL
i j = hU

i j ≤ 1, then d(Ai j , 0̃1) = 1
8 (aL

1i j + aL
2i j

+ aL
3i j + aL

4i j + aU
1i j + 5aU

2i j + 5aU
3i j + aU

4i j ).
Let Ai j and Ai ′ j ′ be two IT2TrFN ratings. Because the

signed distances d(Ai j , 0̃1) and d(Ai ′ j ′ , 0̃1) are real num-
bers, they satisfy the criteria of linear ordering. That is, one
of the following three conditions must hold: d(Ai j , 0̃1) >

d(Ai ′ j ′ , 0̃1), d(Ai j , 0̃1) = d(Ai ′ j ′, 0̃1), or d(Ai j , 0̃1) <

d(Ai ′ j ′ , 0̃1). Subsequently, the signed distance based on
IT2TrFNs satisfies the law of trichotomy. A comparison of
the IT2TrFN ratings can be made via the signed distance from
the IT2TrFN value to 0̃1.

3 Interval type-2 fuzzy PROMETHEE

The basic principle of PROMETHEE is based on a pair-
wise comparison of alternatives for each recognized criterion
(Behzadian et al. 2010). Alternatives are evaluated according
to different criteria that have to be maximized (i.e., benefit
criteria) or minimized (i.e., cost criteria). In PROMETHEE I,
partial rankings are obtained by calculating the positive and
negative outranking flows; both flows do not usually yield the
same rankings (Vinodh and Jeya Girubha 2012). Because the
decision maker always desires full ranking, PROMETHEE
II is appropriately employed for the evaluation (Brans and
Vincke 1985). This study develops interval type-2 fuzzy
PROMETHEE I and II methods to address MCDA problems.
The proposed methods begin with the formulation of the eval-
uative rating Ai j and the importance weight W j within the
IT2TrFN environment.

3.1 Signed distance-based generalized criteria

For any two alternatives zρ and zβ (zρ, zβ ∈ Z) with respect
to each criterion x j ∈ X , the pairwise comparison of the
evaluative ratings Aρ j and Aβ j can be indicated by prefer-
ence function h(Aρ j , Aβ j ). Recall that Aρ j = [AL

ρ j , AU
ρ j ] =

[(aL
1ρ j , aL

2ρ j , aL
3ρ j , aL

4ρ j ; hL
ρ j ), (a

U
1ρ j , aU

2ρ j , aU
3ρ j , aU

4ρ j ; hU
ρ j )]

and Aβ j = [AL
β j , AU

β j ] = [(aL
1β j , aL

2β j , aL
3β j , aL

4β j ; hL
β j ),

(aU
1β j , aU

2β j , aU
3β j , aU

4β j ; hU
β j )]. Let the preference function

h(Aρ j , Aβ j ) denote the intensity of the preference of Aρ j

over Aβ j . The preference function h(Aρ j , Aβ j ) has the fol-
lowing meanings:

(i) h(Aρ j , Aβ j ) = 0 indicates an indifference between Aρ j

and Aβ j or no preference of Aρ j over Aβ j ;
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(ii) h(Aρ j , Aβ j ) ∼ 0 indicates a weak preference of Aρ j

over Aβ j ;
(iii) h(Aρ j , Aβ j ) ∼ 1 indicates a strong preference of Aρ j

over Aβ j ;
(iv) h(Aρ j , Aβ j ) = 1 indicates a strict preference of Aρ j

over Aβ j .

Because the signed distances of d(Aρ j , 0̃1) and d(Aβ j , 0̃1)

can be used to order Aρ j and Aβ j , the preference function
h(Aρ j , Aβ j ) can be defined as a function of the difference
between d(Aρ j , 0̃1) and d(Aβ j , 0̃1). Let

D =
{

d(Aρ j , 0̃1) − d(Aβ j , 0̃1) if x j ∈ Xb,

d(Aβ j , 0̃1) − d(Aρ j , 0̃1) if x j ∈ Xc.
(19)

To better define the indifference area, we consider a function
H(D) that is directly related to the preference function h as
follows:

H(D) =
{

h(Aρ j , Aβ j ) if D ≥ 0,

h(Aβ j , Aρ j ) if D ≤ 0.
(20)

Classical PROMETHEE suggests several types of preference
functions to express the importance of the relative differ-
ence between alternatives for a certain criterion and weights
to indicate the relative importance of the criterion (Vinodh
and Jeya Girubha 2012). To facilitate the selection of a spe-
cific preference function, Brans and Vincke (1985) proposed
six basic types of generalized criteria: the (1) usual crite-
rion, (2) U-shaped criterion, (3) V-shaped criterion, (4) level
criterion, (5) V-shaped with indifference criterion, and (6)
Gaussian criterion. For each generalized criterion, the value
of an indifference threshold, q, the value of a strict preference
threshold, p, and the standard deviation of a normal distribu-
tion, α, have to be fixed values (Brans and Mareschal 1992).
In each case, these parameters convey a clear significance
for the decision maker (Behzadian et al. 2010). In this paper,
we consider the following six types of signed distance-based
generalized criteria:

(i) Type I: Signed distance-based usual criterion:

H(D) =
{

0 if d(Aρ j , 0̃1) = d(Aβ j , 0̃1),

1 otherwise.
(21)

In this case, there is indifference between Aρ j and Aβ j if
and only if d(Aρ j , 0̃1) = d(Aβ j , 0̃1). If the two signed
distances are different, the decision maker has a strict
preference for the alternative that has the larger signed
distance. Note that no parameter has to be defined in
this generalized criterion.

(ii) Type II: Signed distance-based U-shaped criterion:

H(D) =
{

0 if
∣∣∣d(Aρ j , 0̃1) − d(Aβ j , 0̃1)

∣∣∣ ≤ q,

1 otherwise.

(22)

The two alternatives Aρ and Aβ with respect to x j

are indifferent to the decision maker as long as the
absolute value of the difference between their signed
distances to 0̃1 does not exceed the indifference thresh-
old q. If this is not the case, there is strict preference.
The decision maker has to designate the value of q.
The indifference threshold q is the largest value of
|d(Aρ j , 0̃1) − d(Aβ j , 0̃1)| below which the decision
maker considers the corresponding alternatives indif-
ferent.

(iii) Type III: Signed distance-based V-shaped criterion:

H(D)

=
{ |d(Aρ j ,0̃1)−d(Aβ j ,0̃1)|

p if |d(Aρ j , 0̃1) − d(Aβ j , 0̃1)| ≤ p,

1 otherwise.

(23)

As long as |d(Aρ j , 0̃1) − d(Aβ j , 0̃1)| is smaller than
the value of p, the preference of the decision maker
increases linearly with |d(Aρ j , 0̃1) − d(Aβ j , 0̃1)|. If
|d(Aρ j , 0̃1)−d(Aβ j , 0̃1)| becomes larger than p, there
is a strict preference situation. The preference thresh-
old p is the smallest value of |d(Aρ j , 0̃1) − d(Aβ j , 0̃1)|
above which there is a strict preference.

(iv) Type IV: Signed distance-based level criterion:

H(D) =
⎧⎨
⎩

0 if |d(Aρ j , 0̃1) − d(Aβ j , 0̃1)| ≤ q,
1
2 if q < |d(Aρ j , 0̃1) − d(Aβ j , 0̃1)| ≤ p,

1 otherwise.

(24)

In this case, the indifference threshold q and the pref-
erence threshold p are simultaneously employed. If
|d(Aρ j , 0̃1) − d(Aβ j , 0̃1)| lies between q and p, there
is a weak preference situation (H(D) = 1/2). The deci-
sion maker has to define the two thresholds in this signed
distance-based level criterion.

(v) Type V: Signed distance-based V-shaped with indiffer-
ence criterion:

H(D)

=

⎧⎪⎨
⎪⎩

0 if |d(Aρ j , 0̃1) − d(Aβ j , 0̃1)| ≤ q,
|d(Aρ j ,0̃1)−d(Aβ j ,0̃1)|−q

p−q if q < |d(Aρ j , 0̃1) − d(Aβ j , 0̃1)|≤ p,

1 otherwise.

(25)

In this case, the decision maker considers that his/her
preference increases linearly from indifference to strict
preference in the area between the two thresholds q and
p. Two parameters have to be defined.
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(vi) Type VI: Signed distance-based Gaussian criterion:

H(D) = 1 − e− (d(Aρ j ,0̃1)−d(Aβ j ,0̃1))2

2σ2 . (26)

The definition of the Gaussian criterion has no discon-
tinuities and leads to guaranteed stability of the results.
The Gaussian criterion only requires establishing α,
which is facilitated through experience with normal
distributions in statistics. The parameter α is directly
connected with the standard deviation of a normal dis-
tribution.

3.2 Signed distance-based comprehensive preference index

Consider that the criterion importance defined on X is
expressed as W = {〈x j , W j 〉|x j ∈ X, j = 1, 2, . . . , n},
where W j = [(wL

1 j , w
L
2 j , w

L
3 j , w

L
4 j ; hL

j ), (w
U
1 j , w

U
2 j , w

U
3 j ,

wU
4 j ; hU

j )]. In addition, h(Aρ j , Aβ j ) = H(D) when D ≥ 0;
otherwise, h(Aρ j , Aβ j ) = 0. Let h̄ denote the signed
distance-based comprehensive preference index. For any two
alternatives zρ and zβ (zρ, zβ ∈ Z), the index h̄ is defined
as the weighted average of the preference functions by the
following:

h̄(zρ, zβ) =
(

n⊕
j=1

h(Aρ j , Aβ j ) · W j

)
∅

(
n⊕

j=1
W j

)
. (27)

Specifically, by applying the arithmetic operations of
IT2TrFN values listed in the Appendix, we obtain

h̄(zρ, zβ)

=
[(∑n

j=1 h(Aρ j , Aβ j ) · wL
1 j∑n

j=1 wL
4 j

,

∑n
j=1 h(Aρ j , Aβ j ) · wL

2 j∑n
j=1 wL

3 j

,

∑n
j=1 h(Aρ j , Aβ j ) · wL

3 j∑n
j=1 wL

2 j

,

∑n
j=1 h(Aρ j , Aβ j ) · wL

4 j∑n
j=1 wL

1 j

; n
min
j=1

hL
j

)
,

(∑n
j=1 h(Aρ j , Aβ j ) · wU

1 j∑n
j=1 wU

4 j

,

∑n
j=1 h(Aρ j , Aβ j ) · wU

2 j∑n
j=1 wU

3 j

,

∑n
j=1 h(Aρ j , Aβ j ) · wU

3 j∑n
j=1 wU

2 j

,

∑n
j=1 h(Aρ j , Aβ j ) · wU

4 j∑n
j=1 wU

1 j

; n
min
j=1

hU
j

)]
.

For brevity, we define h̄ξ
1ρβ =∑ h(Aρ j , Aβ j ) · w

ξ
1 j/
∑

w
ξ
4 j ,

h̄ξ
2ρβ =∑ h(Aρ j , Aβ j ) ·wξ

2 j/
∑

w
ξ
3 j , h̄ξ

3ρβ =∑ h(Aρ j , Aβ j )

·wξ
3 j/
∑

w
ξ
2 j , h̄ξ

4ρβ = ∑
h(Aρ j , Aβ j ) · w

ξ
4 j/
∑

w
ξ
1 j , and

hξ
ρβ = minn

j=1 hξ
j for ξ ∈ {L , U }. The signed distance-based

comprehensive preference index h̄(zρ, zβ) of the alternatives
zρ and zβ can then be expressed as

h̄(zρ, zβ) =
[(

h̄L
1ρβ, h̄L

2ρβ, h̄L
3ρβ, h̄L

4ρβ; hL
ρβ

)
,(

h̄U
1ρβ, h̄U

2ρβ, h̄U
3ρβ, h̄U

4ρβ; hU
ρβ

)]
, (28)

where 0 ≤ h̄L
1ρβ ≤ h̄L

2ρβ ≤ h̄L
3ρβ ≤ h̄L

4ρβ , 0 ≤ h̄U
1ρβ ≤

h̄U
2ρβ ≤ h̄U

3ρβ ≤ h̄U
4ρβ , 0 ≤ hL

ρβ ≤ hU
ρβ ≤ 1, h̄U

1ρβ ≤ h̄L
1ρβ ,

and h̄L
4ρβ ≤ h̄U

4ρβ .
When simultaneously considering all criteria, h̄(zρ, zβ)

represents the intensity of preference of alternative zρ over
alternative zβ by the decision maker. When h̄(zρ, zβ) ≈ [(0,
0, 0, 0; 1), (0, 0, 0, 0; 1)], a weak preference for zρ over zβ

is implied based on all criteria. When h̄(zρ, zβ) ≈ [(1, 1, 1,
1; 1), (1, 1, 1, 1; 1)], a strong preference for zρ over zβ is
implied based on all criteria.

3.3 Interval type-2 fuzzy PROMETHEE I and II rankings

The signed distance-based comprehensive preference index
determines a valued outranking relation on the set Z of alter-
natives. This relation can be represented as a valued out-
ranking graph in which the nodes are the alternatives of Z .
Between the two nodes (i.e., alternatives) zρ and zβ , there
are two arcs with IT2TrFN values h̄(zρ, zβ) and h̄(zβ, zρ).
To evaluate the alternatives in Z by using the outranking
relation, we consider the following flows:

(i) The leaving flow:

�+(zi ) = m⊕
β=1,β �=i

h̄(zi , zβ)

=
⎡
⎣
⎛
⎝ m∑

β=1,β �=i

h̄L
1iβ,

m∑
β=1,β �=i

h̄L
2iβ,

m∑
β=1,β �=i

h̄L
3iβ,

m∑
β=1,β �=i

h̄L
4iβ; m

min
β=1,β �=i

hL
iβ

⎞
⎠ ,

⎛
⎝ m∑

β=1,β �=i

h̄U
1iβ,

m∑
β=1,β �=i

h̄U
2iβ,

m∑
β=1,β �=i

h̄U
3iβ,

m∑
β=1,β �=i

h̄U
4iβ; m

min
β=1,β �=i

hU
iβ

⎞
⎠
⎤
⎦ . (29)

The leaving flow is the sum of the IT2TrFN values of
the arcs leaving node zi , which provides a measure of
the outranking character of zi (i.e., how zi outranks all
other alternatives of Z).

(ii) The entering flow:

�−(zi ) = m⊕
ρ=1,ρ �=i

h̄(zρ, zi )

=
⎡
⎣
⎛
⎝ m∑

ρ=1,ρ �=i

h̄L
1ρi ,

m∑
ρ=1,ρ �=i

h̄L
2ρi ,

m∑
ρ=1,ρ �=i

h̄L
3ρi ,

m∑
ρ=1,ρ �=i

h̄L
4ρi ;

m
min

ρ=1,ρ �=i
hL

ρi

⎞
⎠ ,
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⎛
⎝ m∑

ρ=1,ρ �=i

h̄U
1ρi ,

m∑
ρ=1,ρ �=i

h̄U
2ρi ,

m∑
ρ=1,ρ �=i

h̄U
3ρi ,

m∑
ρ=1,ρ �=i

h̄U
4ρi ;

m
min

ρ=1,ρ �=i
hU

ρi

⎞
⎠
⎤
⎦ . (30)

The entering flow is the sum of the IT2TrFN values of
the arcs entering node zi , which provides a measure of
the outranked character of zi (i.e., how zi is dominated
by all other alternatives of Z).

(iii) The net flow:

�(zi ) = (�+(zi ))�(�−(zi ))

=

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

m∑
β = 1,

β �= i

h̄L
1iβ −

m∑
ρ = 1,

ρ �= i

h̄L
4ρi ,

m∑
β = 1,

β �= i

h̄L
2iβ −

m∑
ρ = 1,

ρ �= i

h̄L
3ρi ,

m∑
β = 1,

β �= i

h̄L
3iβ

−
m∑

ρ = 1,

ρ �= i

h̄L
2ρi ,

m∑
β = 1,

β �= i

h̄L
4iβ −

m∑
ρ = 1,

ρ �= i

h̄L
1ρi ;

min

⎧⎪⎪⎨
⎪⎪⎩

m
min

β = 1,

β �= i

hL
iβ,

m
min

ρ = 1,

ρ �= i

hL
ρi

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

m∑
β = 1,

β �= i

h̄U
1iβ −

m∑
ρ = 1,

ρ �= i

h̄U
4ρi ,

m∑
β = 1,

β �= i

h̄U
2iβ

−
m∑

ρ = 1,

ρ �= i

h̄U
3ρi ,

m∑
β = 1,

β �= i

h̄U
3iβ −

m∑
ρ = 1,

ρ �= i

h̄U
2ρi ,

m∑
β = 1,

β �= i

h̄U
4iβ −

m∑
ρ = 1,

ρ �= i

h̄U
1ρi ;

min

⎧⎪⎪⎨
⎪⎪⎩

m
min

β = 1,

β �= i

hU
iβ,

m
min

ρ = 1,

ρ �= i

hU
ρi

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠

⎤
⎥⎥⎦ . (31)

the case of the interval type-2 fuzzy PROMETHEE I method,
we employ the rationale that the higher the leaving flow
and the lower the entering flow, the better the alterna-
tive. By employing the signed distances d(�+(zi ), 0̃1) and
d(�−(zi ), 0̃1) for each alternative zi ∈ Z , the leaving and

entering flows, respectively, induce the following proce-
dures:
{

zi �+ z j if and only if d(�+(zi ), 0̃1) > d(�+(z j ), 0̃1),

zi ∼+ z j if and only if d(�+(zi ), 0̃1) = d(�+(z j ), 0̃1);
(32){

zi �− z j if and only if d(�−(zi ), 0̃1) < d(�−(z j ), 0̃1),

zi ∼− z j if and only if d(�−(zi ), 0̃1) = d(�−(z j ), 0̃1).

(33)

The interval type-2 fuzzy PROMETHEE I partial preorder
(�I,∼I, R) is then obtained by considering the intersection
of these two preorders:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zi �I z j if zi �+ z j and zi �− z j ,

(zi outranks z j ) or zi �+ z j and zi ∼− z j ,

or zi ∼+ z j and zi �− z j ;
zi ∼I z j

(zi is indifferent to z j ) if and only if zi ∼+ z j

and zi ∼− z j ;
zi R z j otherwise.

(zi and z j

are incomparable)

(34)

Note that only confirmed outranking relations are given
by the partial preorder. Some alternatives may remain
incomparable by using the proposed interval type-2 fuzzy
PROMETHEE I method.

In the case of the interval type-2 fuzzy PROMETHEE
II method, we compute the signed distance d(�(zi ), 0̃1) for
each alternative zi ∈ Z . Then, a complete preorder (�II,∼II)

is induced by the net flow as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

zi �II z j (zi outranks z j ) if and only if d(�(zi ), 0̃1)

> d(�(z j ), 0̃1),

zi ∼II z j (zi is indifferent to z j ) if and only if d(�(zi ), 0̃1)

= d(�(z j ), 0̃1).

(35)

To avoid any incomparability, use of the interval type-2 fuzzy
PROMETHEE II method can produce the complete preorder
on Z . Thus, it is easier for the decision maker to resolve the
decision-making problem by using the complete preorder.

3.4 The proposed algorithm

The procedure for implementing the proposed interval type-2
fuzzy PROMETHEE methods is started to determine the dif-
ference between signed distances based on pairwise compar-
isons of evaluative ratings. This step is followed by using
a relevant preference function for each criterion, calculat-
ing signed distance-based comprehensive preference indices,
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and determining leaving and entering flows for each alterna-
tive. The procedure comes to an end with the determination of
partial rankings in the interval type-2 fuzzy PROMETHEE I
method or the calculation of net flows for each alternative and
complete rankings in the interval type-2 fuzzy PROMETHEE
II method.

Based on IT2TrFNs, the interval type-2 fuzzy PROME-
THEE I method for solving an MCDA problem is summa-
rized in the following steps:

Step 1: Formulate an MCDA problem. Specify the alter-
native set Z = {z1, z2, . . . , zm} and the criterion
set X = {x1, x2, . . . , xn} that is divided into Xb

and Xc.
Step 2: Designate the appropriate type of generalized

criteria for each x j ∈ X . Request that the deci-
sion maker specify the corresponding parame-
ters (the indifference threshold q, the preference
threshold p, or the standard deviation α of a nor-
mal distribution).

Step 3: Select the appropriate linguistic variables or
other data collection tools to establish the
IT2TrFN rating Ai j in (1) for alternative zi ∈ Z
with respect to criterion x j ∈ X and the impor-
tance weight W j in (3) for criterion x j ∈ X ,
which are provided by the decision maker.

Step 4: By applying (18), calculate the signed distance
d(Ai j , 0̃1) from Ai j to 0̃1 for each alternative zi

with respect to the criterion x j .
Step 5: Use the appropriate types of signed distance-

based generalized criteria in (21)–(26) to acquire
the preference function h(Aρ j , Aβ j ) for each
pairwise comparison of alternatives zρ, zβ ∈ Z
with respect to x j ∈ X .

Step 6: Consider the criterion importance W j of each
criterion x j ∈ X to compute the signed distance-
based comprehensive preference index h̄(zρ, zβ)

for each pair of (zρ, zβ) using (27).
Step 7: Apply (29) and (30) to obtain the leaving flow

�+(zi ) and entering flow �−(zi ) for alter-
native zi ∈ Z . Then, compute the signed
distances d(�+(zi ), 0̃1) and d(�−(zi ), 0̃1) for
zi ∈ Z .

Step 8: Follow the procedures in (32) and (33) to deter-
mine the partial preorder for the set Z of alter-
natives by using (�I,∼I, R) in (34).
The interval type-2 fuzzy PROMETHEE II
method, which is based on IT2TrFNs for solv-
ing an MCDA problem, is summarized in the
following steps:

Steps 1–6: See Steps 1–6 of the interval type-2 fuzzy
PROMETHEE I method.

Step 7: Apply (31) to obtain the net flow �(zi ) for alter-
native zi ∈ Z . Then, compute the signed distance
d(�(zi ), 0̃1) for zi ∈ Z .

Step 8: Determine the complete preorder for the set Z of

alternatives by using (�II,∼II) in (35).

4 Case illustration

In this section, we examine a real-world landfill siting prob-
lem in KS City, adapted from Chen (2011b), and discuss
how the proposed interval type-2 fuzzy PROMETHEE I and
II outranking methods are implemented in practice. Chen
(2011b) presented an integrated approach that combines the
objective and subjective importance of decision criteria and
assessed the criterion importance in the problem of landfill
site selection. This paper utilizes data similar to the data from
the landfill siting problem; however, we apply the proposed
PROMETHEE I and PROMETHEE II methods to determine
the partial and complete rankings, respectively, of candidate
locations.

4.1 Illustration of the algorithm

The proposed interval type-2 fuzzy PROMETHEE I and II
outranking methods were applied to solve the problem of
landfill site selection introduced by Chen (2011b), and the
computational procedure is summarized below.

In Step 1, there are four available landfill sites; the set of
all candidate locations is denoted by Z = {z1, z2, z3, z4}.
The seven evaluation criteria for landfill site selection are
considered, including transportation convenience (x1), ter-
rain suitability (x2), community equity (x3), environmental
impact (x4), ecological impact (x5), construction cost (x6),
and historic impact (x7). The criteria x1, x2, and x3 denote
benefit criteria, whereas all others denote cost criteria. The set
of evaluative criteria is denoted by X = {x1, x2, x3, . . . , x7}
with Xb = {x1, x2, x3} and Xc = {x4, x5, x6, x7}.

Table 2 indicates the types of generalized criteria and the
corresponding parameters for each criterion in Step 2. The
table also illustrates that if the benefit criteria have to be
maximized, the cost criteria also have to be minimized. For
convenience, the decision maker can use linguistic variables
to describe ratings of alternatives with respect to various cri-
teria, and then these linguistic variables can be converted
into IT2TrFNs. This paper adopts Chen’s (2011b) nine-point
rating scales to establish IT2TrFN ratings of the alternatives
and importance weights of the criteria. Table 2 depicts the
linguistic evaluations of the four candidate locations.

In Step 3, we convert linguistic variables to IT2TrFNs
according to Chen’s (2011b) approach. Table 3 shows
the importance weights and the IT2TrFN ratings in the
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Table 2 Criterion characteristics and linguistic evaluations of the candidate locations

Evaluative criteria Direction Importance
weight

Candidate locations Type of the preference function Parameters

z1 z2 z3 z4

x1 (transportation convenience) Max H L AL AH H V-shaped with indifference q = 0.1, p = 0.5

x2 (terrain suitability) Max MH AH VH AL L Usual –

x3 (community equity) Max H AL H MH H Level q = 0.1, p = 0.5

x4 (environmental impact) Min MH L M AH VH U-shaped q = 0.1

x5 (ecological impact) Min MH L ML AH MH Gaussian σ = 0.4

x6 (construction cost) Min M AH ML M M Gaussian σ = 0.4

x7 (historic impact) Min ML AH L VH H V-shaped p = 0.5

landfill siting problem. In addition, this table lists the com-
putation results of the signed distance d(Ai j , 0̃1) from Ai j

to 0̃1 according to Step 4. For example, consider A24

= [(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.3200, 0.4100,

0.5800, 0.6500; 1)]. The signed distance d(A24, 0̃1) is com-
puted using (18) as follows:

d( Ā24, 0̃1) = 1

8

(
0.4025 + 0.4525 + 0.5375 + 0.5675 + 4

× 0.3200 + 2 × 0.4100 + 2 × 0.5800 + 4 × 0.6500

+ 3(0.4100 + 0.5800 − 0.3200 − 0.6500)
0.8

1

)
= 0.9835.

In Step 5, we calculate the preference function h(Aρ j , Aβ j )

for each pairwise comparison of alternatives zρ, zβ ∈ Z with
respect to x j ∈ X . Consider h(A1 j , A2 j ) for example. As
indicated in Table 2, the benefit criterion x1 belongs to Type V
(i.e., the signed distance-based V-shaped with indifference
criterion), and the given parameters are q = 0.1 and p = 0.5.
Applying (19), we obtain D = d(A11, 0̃1) − d(A21, 0̃1) =
0.2768 − 0.0000 = 0.2768 because x1 ∈ Xb; then, it fol-
lows that h(A11, A21) = H(D) because D(= 0.2768) ≥ 0
using (20). Because 0.1 < |d(A11, 0̃1) − d(A21, 0̃1)| ≤ 0.5,
the preference function h(A11, A21) is derived using (25) as
follows:

h(A11, A21)= H(D)= |0.2768 − 0.0000| − 0.1

0.5 − 0.1
= 0.4420.

For the benefit criterion x2, which belongs to Type I (i.e.,
the signed distance-based usual criterion), we have D =
d(A12, 0̃1) − d(A22, 0̃1) = 2.0000 − 1.9647 = 0.0353 ≥ 0.
According to (21), h(A12, A22) = H(D) = 1 because
d(A12, 0̃1) �= d(A22, 0̃1).

Next, for the cost criterion x4, which belongs to Type
II (i.e., the signed distance-based U-shaped criterion) with
the parameter q = 0.1, we obtain D = d(A24, 0̃1) −
d(A14, 0̃1) = 0.9835 − 0.2768 = 0.7067 ≥ 0 because x4 ∈
Xc. According to (22), we have h(A14, A24) = H(D) = 1
because |d(A14, 0̃1) − d(A24, 0̃1)| > 0.5. The cost crite-
rion x5 belongs to Type VI (i.e., the signed distance-based
Gaussian criterion) with the parameter α = 0.4. Because
d(A25, 0̃1) − d(A15, 0̃1) = 0.5833 − 0.2768 = 0.3065 ≥ 0,
the preference function h(A15, A25) is calculated using (26)
as follows:

h(A15, A25) = H(D) = 1 − e
− (0.2768−0.5833)2

2×0.42

= 0.2544.

For the benefit criterion x3, we obtain h(A13, A23) = 0
because d(A13, 0̃1) − d(A23, 0̃1) = 0.0000 − 1.6968 =
−1.6968 < 0. For the cost criteria x6 and x7, we have
d(A26, 0̃1) − d(A16, 0̃1) = 0.5833 − 2.0000 = −1.4167 <

0 and d(A27, 0̃1) − d(A17, 0̃1) = 0.2768 − 2.0000 =
−1.7232 < 0; thus, h(A16, A26) = h(A17, A27) = 0. The
computation results of the preference function h(Aρ j , Aβ j )

are shown in Table 4.
In Step 6, the computation results of the signed distance-

based comprehensive preference index h̄(zρ, zβ) for each
pair of (zρ, zβ) are also depicted in Table 4. For example,
h̄(z1, z2) = [(h̄L

112, h̄L
212, h̄L

312, h̄L
412; hL

12), (h̄
U
112, h̄U

212, h̄U
312,

h̄U
412; hU

12)], where

h̄L
112 =

∑7
j=1 h(A1 j , A2 j ) · wL

1 j∑7
j=1 wL

4 j

= 0.442 × 0.7825 + 1 × 0.65 + 0 × 0.7825 + 1 × 0.65 + 0.2544 × 0.65 + 0 × 0.4025 + 0 × 0.2325

0.9075 + 0.79 + 0.9075 + 0.79 + 0.79 + 0.5675 + 0.3575
= 0.3544.
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Table 3 The importance
weights and the IT2TrFN
ratings.

The importance weight W j of criterion x j ∈ X

W1 = [(0.7825, 0.8150, 0.8850, 0.9075; 0.8), (0.7200, 0.7800, 0.9200, 0.9700; 1)]
W2 = [(0.6500, 0.6725, 0.7575, 0.7900; 0.8), (0.5800, 0.6300, 0.8000, 0.8600; 1)]
W3 = [(0.7825, 0.8150, 0.8850, 0.9075; 0.8), (0.7200, 0.7800, 0.9200, 0.9700; 1)]
W4 = [(0.6500, 0.6725, 0.7575, 0.7900; 0.8), (0.5800, 0.6300, 0.8000, 0.8600; 1)]
W5 = [(0.6500, 0.6725, 0.7575, 0.7900; 0.8), (0.5800, 0.6300, 0.8000, 0.8600; 1)]
W6 = [(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.3200, 0.4100, 0.5800, 0.6500; 1)]
W7 = [(0.2325, 0.2550, 0.3250, 0.3575; 0.8), (0.1700, 0.2200, 0.3600, 0.4200; 1)]

The IT2TrFN rating Ai j of alternative zi ∈ Z with respect to criterion x j ∈ X d(Ai j , 0̃1)

A11 = [(0.0875, 0.1200, 0.1600, 0.1825; 0.8), (0.0400, 0.1000, 0.1800, 0.2300; 1)] 0.2768

A12 = [(1.0000, 1.0000, 1.0000, 1.0000; 1), (1.0000, 1.0000, 1.0000, 1.0000; 1)] 2.0000

A13 = [(0.0000, 0.0000, 0.0000, 0.0000; 1), (0.0000, 0.0000, 0.0000, 0.0000; 1)] 0.0000

A14 = [(0.0875, 0.1200, 0.1600, 0.1825; 0.8), (0.0400, 0.1000, 0.1800, 0.2300; 1)] 0.2768

A15 = [(0.0875, 0.1200, 0.1600, 0.1825; 0.8), (0.0400, 0.1000, 0.1800, 0.2300; 1)] 0.2768

A16 = [(1.0000, 1.0000, 1.0000, 1.0000; 1), (1.0000, 1.0000, 1.0000, 1.0000; 1)] 2.0000

A17 = [(1.0000, 1.0000, 1.0000, 1.0000; 1), (1.0000, 1.0000, 1.0000, 1.0000; 1)] 2.0000

A21 = [(0.0000, 0.0000, 0.0000, 0.0000; 1), (0.0000, 0.0000, 0.0000, 0.0000; 1)] 0.0000

A22 = [(0.9475, 0.9850, 0.9925, 0.9925; 0.8), (0.9300, 0.9800, 1.0000, 1.0000; 1)] 1.9647

A23 = [(0.7825, 0.8150, 0.8850, 0.9075; 0.8), (0.7200, 0.7800, 0.9200, 0.9700; 1)] 1.6968

A24 = [(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.3200, 0.4100, 0.5800, 0.6500; 1)] 0.9835

A25 = [(0.2325, 0.2550, 0.3250, 0.3575; 0.8), (0.1700, 0.2200, 0.3600, 0.4200; 1)] 0.5833

A26 = [(0.2325, 0.2550, 0.3250, 0.3575; 0.8), (0.1700, 0.2200, 0.3600, 0.4200; 1)] 0.5833

A27 = [(0.0875, 0.1200, 0.1600, 0.1825; 0.8), (0.0400, 0.1000, 0.1800, 0.2300; 1)] 0.2768

A31 = [(1.0000, 1.0000, 1.0000, 1.0000; 1), (1.0000, 1.0000, 1.0000, 1.0000; 1)] 2.0000

A32 = [(0.0000, 0.0000, 0.0000, 0.0000; 1), (0.0000, 0.0000, 0.0000, 0.0000; 1)] 0.0000

A33 = [(0.6500, 0.6725, 0.7575, 0.7900; 0.8), (0.5800, 0.6300, 0.8000, 0.8600; 1)] 1.4333

A34 = [(1.0000, 1.0000, 1.0000, 1.0000; 1), (1.0000, 1.0000, 1.0000, 1.0000; 1)] 2.0000

A35 = [(1.0000, 1.0000, 1.0000, 1.0000; 1), (1.0000, 1.0000, 1.0000, 1.0000; 1)] 2.0000

A36 = [(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.3200, 0.4100, 0.5800, 0.6500; 1)] 0.9835

A37 = [(0.9475, 0.9850, 0.9925, 0.9925; 0.8), (0.9300, 0.9800, 1.0000, 1.0000; 1)] 1.9647

A41 = [(0.7825, 0.8150, 0.8850, 0.9075; 0.8), (0.7200, 0.7800, 0.9200, 0.9700; 1)] 1.6968

A42 = [(0.0875, 0.1200, 0.1600, 0.1825; 0.8), (0.0400, 0.1000, 0.1800, 0.2300; 1)] 0.2768

A43 = [(0.7825, 0.8150, 0.8850, 0.9075; 0.8), (0.7200, 0.7800, 0.9200, 0.9700; 1)] 1.6968

A44 = [(0.9475, 0.9850, 0.9925, 0.9925; 0.8), (0.9300, 0.9800, 1.0000, 1.0000; 1)] 1.9647

A45 = [(0.6500, 0.6725, 0.7575, 0.7900; 0.8), (0.5800, 0.6300, 0.8000, 0.8600; 1)] 1.4333

A46 = [(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.3200, 0.4100, 0.5800, 0.6500; 1)] 0.9835

A47 = [(0.7825, 0.8150, 0.8850, 0.9075; 0.8), (0.7200, 0.7800, 0.9200, 0.9700; 1)] 1.6968

In a similar way, we obtain h̄(z1, z2) = [(0.3544, 0.3825,

0.4819, 0.5258; 0.8), (0.2908, 0.3407, 0.5417, 0.6451; 1)].
By employing the interval type-2 fuzzy PROMETHEE

I method, we compute leaving flow �+(zi ), entering flow
�−(zi ), and their signed distances for each alternative zi ∈ Z
according to Step 7, as shown in Table 5. Consider �+(z1)

and �−(z1), for example. Applying (29), we obtain

�+(z1) = 4⊕
β=2

h̄(z1, zβ)

=
⎡
⎣
⎛
⎝ 4∑

β=2

h̄L
11β,

4∑
β=2

h̄L
21β,

4∑
β=2

h̄L
31β,

4∑
β=2

h̄L
41β; 4

min
β=2

hL
1β

⎞
⎠ ,

⎛
⎝ 4∑

β=2

h̄U
11β,

4∑
β=2

h̄U
21β,

4∑
β=2

h̄U
31β,

4∑
β=2

h̄U
41β; 4

min
β=2

hU
1β

⎞
⎠
⎤
⎦

= [(0.3544 + 0.3816 + 0.3797, 0.3825 + 0.4113

+ 0.4092, 0.4819 + 0.5218 + 0.5192, 0.5258

+ 0.5711 + 0.5682; min {0.8, 0.8, 0.8}), (0.2908

+ 0.3113 + 0.3097, 0.3407 + 0.3649

+0.3630, 0.5417 + 0.5882 + 0.5852, 0.6451

+0.7030 + 0.6994; min{1, 1, 1})]
= [(1.1157, 1.2030, 1.5229, 1.6651; 0.8), (0.9118,

1.0686, 1.7151, 2.0475; 1)].
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Table 4 The results of preference functions and comprehensive preference indices

Criteria Type h(A1 j , A2 j ) h(A1 j , A3 j ) h(A1 j , A4 j ) h(A2 j , A1 j ) h(A2 j , A3 j ) h(A2 j , A4 j )

x1 V 0.4420 0.0000 0.0000 0.0000 0.0000 0.0000

x2 I 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000

x3 IV 0.0000 0.0000 0.0000 1.0000 0.5000 0.0000

x4 II 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000

x5 VI 0.2544 0.9999 0.9847 0.0000 0.9981 0.8954

x6 VI 0.0000 0.0000 0.0000 0.9981 0.3938 0.3938

x7 III 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000

Criteria Type h(A3 j , A1 j ) h(A3 j , A2 j ) h(A3 j , A4 j ) h(A4 j , A1 j ) h(A4 j , A2 j ) h(A4 j , A3 j )

x1 V 1.0000 1.0000 0.5080 1.0000 1.0000 0.0000

x2 I 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

x3 IV 1.0000 0.0000 0.0000 1.0000 0.0000 0.5000

x4 II 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

x5 VI 0.0000 0.0000 0.0000 0.0000 0.0000 0.6334

x6 VI 0.9604 0.0000 0.0000 0.9604 0.0000 0.0000

x7 III 0.0706 0.0000 0.0000 0.6064 0.0000 0.5358

The signed distance-based comprehensive preference index h̄(zρ, zβ) of (zρ, zβ)

h̄(z1, z2) = [(0.3544, 0.3825, 0.4819, 0.5258; 0.8), (0.2908, 0.3407, 0.5417, 0.6451; 1)]
h̄(z1, z3) = [(0.3816, 0.4113, 0.5218, 0.5711; 0.8), (0.3113, 0.3649, 0.5882, 0.7030; 1)]
h̄(z1, z4) = [(0.3797, 0.4092, 0.5192, 0.5682; 0.8), (0.3097, 0.3630, 0.5852, 0.6994; 1)]
h̄(z2, z1) = [(0.2772, 0.3102, 0.4010, 0.4413; 0.8), (0.2163, 0.2721, 0.4556, 0.5555; 1)]
h̄(z2, z3) = [(0.5344, 0.5824, 0.7463, 0.8201; 0.8), (0.4284, 0.5136, 0.8448, 1.0189; 1)]
h̄(z2, z4) = [(0.4448, 0.4853, 0.6269, 0.6912; 0.8), (0.3534, 0.4258, 0.7119, 0.8627; 1)]
h̄(z3, z1) = [(0.3851, 0.4246, 0.5302, 0.5748; 0.8), (0.3147, 0.3802, 0.5937, 0.7068; 1)]
h̄(z3, z2) = [(0.1531, 0.1662, 0.2032, 0.2187; 0.8), (0.1288, 0.1506, 0.2255, 0.2643; 1)]
h̄(z3, z4) = [(0.0778, 0.0844, 0.1032, 0.1111; 0.8), (0.0654, 0.0765, 0.1145, 0.1343; 1)]
h̄(z4, z1) = [(0.4095, 0.4524, 0.5702, 0.6209; 0.8), (0.3310, 0.4029, 0.6410, 0.7681; 1)]
h̄(z4, z2) = [(0.1531, 0.1662, 0.2032, 0.2187; 0.8), (0.1288, 0.1506, 0.2255, 0.2643; 1)]
h̄(z4, z3) = [(0.3087, 0.3349, 0.4257, 0.4664; 0.8), (0.2502, 0.2967, 0.4803, 0.5762; 1)]

Then, the signed distance d(�+(z1), 0̃1) = 2.8112. Next,
applying (30), we obtain

�−(z1) = 4⊕
ρ=2

h̄(zρ, z1)

=
⎡
⎣
⎛
⎝ 4∑

ρ=2

h̄L
1ρ1,

4∑
ρ=2

h̄L
2ρ1,

4∑
ρ=2

h̄L
3ρ1,

4∑
ρ=2

h̄L
4ρ1;

4
min
ρ=2

hL
ρ1

⎞
⎠,

⎛
⎝ 4∑

ρ=2

h̄U
1ρ1,

4∑
ρ=2

h̄U
2ρ1,

4∑
ρ=2

h̄U
3ρ1,

4∑
ρ=2

h̄U
4ρ1;

4
min
ρ=2

hU
ρ1 )

⎤
⎦

= [(0.2772 + 0.3851 + 0.4095, 0.3102 + 0.4246

+ 0.4524, 0.4010 + 0.5302 + 0.5702, 0.4413 + 0.5748

+ 0.6209; min{0.8, 0.8, 0.8}), (0.2163 + 0.3147

+ 0.3310, 0.2721 + 0.3802 + 0.4029, 0.4556 + 0.5937

+ 0.6410, 0.5555 + 0.7068 + 0.7681; min{1, 1, 1})]

= [(1.0718, 1.1872, 1.5014, 1.6370; 0.8), (0.8620,

1.0552, 1.6903, 2.0304; 1)] .

The corresponding signed distance d(�−(z1), 0̃1)=2.7632.
In Step 8 of PROMETHEE I, we obtain the results of

z1 �+ z3, z1 �+ z4, z2 �+ z1, z2 �+ z3, z2 �+ z4,
and z4 �+ z3 using d(�+(zi ), 0̃1) > d(�+(z j ), 0̃1) for
zi , z j ∈ Z . Similarly, we obtain the results of z1 �− z3,
z2 �− z1, z2 �− z3, z2 �− z4, z4 �− z1, and z4 �− z3

using d(�−(zi ), 0̃1) < d(�−(z j ), 0̃1) for zi , z j ∈ Z . Fol-
lowing the procedure using (�I,∼I, R), we produce the inter-
val type-2 fuzzy PROMETHEE I partial preorders z1 �I z3,
z2 �I z1, z2 �I z3, z2 �I z4, z4 �I z3, and z1R z4. These par-
tial preorders are represented in Fig. 4. The best choice is z2.

By applying the interval type-2 fuzzy PROMETHEE II
method, we calculate the net flow �(zi ) and its signed dis-
tance d(�(zi ), 0̃1) for each alternative zi ∈ Z according to
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Table 5 The results of leaving flows, entering flows, and net flows

The leaving flow �+(zi ) of alternative zi ∈ Z d(�+(zi ), 0̃1)

�+(z1) = [(1.1157, 1.2030, 1.5229, 1.6651; 0.8), (0.9118, 1.0686, 1.7151, 2.0475; 1)] 2.8112

�+(z2)= [(1.2564, 1.3779, 1.7742, 1.9526; 0.8), (0.9981, 1.2115, 2.0123, 2.4371; 1)] 3.2553

�+(z3)= [(0.6160, 0.6752, 0.8366, 0.9046; 0.8), (0.5089, 0.6073, 0.9337, 1.1054; 1)] 1.5495

�+(z4)= [(0.8713, 0.9535, 1.1991, 1.3060; 0.8), (0.7100, 0.8502, 1.3468, 1.6086; 1)] 2.2133

The entering flow �−(zi ) of alternative zi ∈ Z d(�−(zi ), 0̃1)

�−(z1)= [(1.0718, 1.1872, 1.5014, 1.6370; 0.8), (0.8620, 1.0552, 1.6903, 2.0304; 1)] 2.7632

�−(z2)= [(0.6606, 0.7149, 0.8883, 0.9632; 0.8), (0.5484, 0.6419, 0.9927, 1.1737; 1)] 1.6468

�−(z3)= [(1.2247, 1.3286, 1.6938, 1.8576; 0.8), (0.9899, 1.1752, 1.9133, 2.2981; 1)] 3.1194

�−(z4)= [(0.9023, 0.9789, 1.2493, 1.3705; 0.8), (0.7285, 0.8653, 1.4116, 1.6964; 1)] 2.2999

The net flow �(zi ) of alternative zi ∈ Z d(�(zi ), 0̃1)

�(z1)= [(−0.5213, −0.2984, 0.3357, 0.5933; 0.8), (−1.1186, −0.6217, 0.6599, 1.1855; 1)] 0.0481

�(z2)= [(0.2932, 0.4896, 1.0593, 1.2920; 0.8), (−0.1756, 0.2188, 1.3704, 1.8887; 1)] 1.6084

�(z3)= [(−1.2416, −1.0186, −0.4920, −0.3201; 0.8), (−1.7892, −1.3060, −0.2415, 0.1155; 1)] −1.5699

�(z4)= [(−0.4992, −0.2958, 0.2202, 0.4037; 0.8), (−0.9864, −0.5614, 0.4815, 0.8801; 1)] −0.0866

z2 z3

z1

z4 I:  i j i jz z z z→

Fig. 4 The partial preorder in the landfill siting problem

Step 7, as shown in Table 5. Consider �(z1) as an example.
Applying (31), we obtain

�(z1) = (�+(z1))�(�−(z1))

= [(1.1157 − 1.6370, 1.2030 − 1.5014, 1.5229 − 1.1872,

1.6651 − 1.0718; min {0.8, 0.8}), (0.9118 − 2.0304,

1.0686 − 1.6903, 1.7151 − 1.0552, 2.0475 − 0.8620;
min {1, 1})]

= [(−0.5213, −0.2984, 0.3357, 0.5933; 0.8),

(−1.1186, −0.6217, 0.6599, 1.1855; 1)] .

The corresponding signed distance is d(�(z1), 0̃1) =
0.0481.

In Step 8 of PROMETHEE II, we obtain d(�(z2), 0̃1) >

d(�(z1), 0̃1) > d(�(z4), 0̃1) > d(�(z3), 0̃1). Therefore,
we obtain the interval type-2 fuzzy PROMETHEE II com-
plete preorders as follows: z2 �II z1 �II z4 �II z3. The com-

z2 z4

z1 z3

II:  i j i jz z z z

Fig. 5 The complete preorder in the landfill siting problem

plete preorder is represented in Fig. 5, and the best choice
is z2.

4.2 Discussion

The result of the complete preorder produced by the interval
type-2 fuzzy PROMETHEE II method can facilitate deci-
sion making in general. However, the partial preorder con-
tains more realistic information, which can often be useful in
decision making, especially with regard to incomparability
(Brans et al. 1984, 1986).

The leaving flow is a positive outranking flow (Vinodh and
Jeya Girubha 2012). It measures the degree of dominance to
which a specific alternative outranks all other alternatives.
Conversely, the entering flow, which is also called a nega-
tive outranking flow, measures the degree to which a specific
alternative is dominated by all other alternatives. Therefore,
the leaving and entering flows can be regarded as positive
and negative information, respectively, about the outranking
relations.

There may be asymmetry in the effects of positive and
negative information on outranking relations. Cacioppo et al.
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(1997) and Grabisch et al. (2008) indicated that negative
information has more weight than positive information. That
is, negative information has a much stronger impact on out-
ranking relations than positive information, and this phenom-
enon is consistent with the operation of a negativity bias
(Cacioppo et al. 1997). Considering the illustrative problem
of landfill site selection, the conflict occurs in the outrank-
ing relations between alternatives z1 and z4: z1 �+ z4 based
on leaving flows, and z4 �− z1 based on entering flows.
If the negativity bias exists, the decision maker will attach
more importance to the entering flow than to the leaving
flow. Thus, the decision maker tends to accept the result of
z4 � z1 rather than z1 R z4. Nevertheless, the complete pre-
order obtained by the interval type-2 fuzzy PROMETHEE
II method shows z1 �II z4. Because we can observe the
separate ranking results yielded by the entering and leaving
flows, the interval type-2 fuzzy PROMETHEE I method is
able to provide much more detailed outcomes for facilitating
a realistic decision-making process.

The personal characteristics of the decision maker may
also influence the subjective judgments of positive and nega-
tive information. For example, Chernev (2004) distinguished
between two types of people, i.e., people with promotion
focus and people with prevention focus, on the basis of their
personal goal orientation. People with promotion focus are
primarily interested in their own growth and development,
have more hopes and aspirations, and favor the presence
of positive outcomes. In contrast, persons with prevention
focus are primarily interested in safety and security, are
more concerned with duties and obligations, and favor the
absence of negative outcomes (Chernev 2004; Pham et al.
2004). Therefore, the influence of a negativity bias should
be more prominent in prevention-focused individuals than
in promotion-focused individuals. Moreover, positive out-
comes will have more weight than negative outcomes for a
decision maker with a promotion focus. Based on this discus-
sion, a prospective development is suggested to incorporate
the relative weight or worth of the positive part (i.e., leaving
flow) and negative part (i.e., entering flow) into the calcula-
tion of the net flow. That is, we can define a parameterized
net flow that represents a mixed result of the entering and
leaving flows.

4.3 Comparative analysis

A comparative study was conducted to validate the results
of the proposed method with those from ordinary fuzzy
PROMETHEE methods. To compare the solution results on
a common basis, we used the same linguistic rating data in
Table 2 to solve the problem of landfill site selection.

As mentioned before, this study adopted a nine-point rat-
ing scale, which originates from Chen’s (1996) work, to mea-

sure the variability in responses for better sensitivity. Chen’s
(1996) used a nine-member linguistic term set (including
absolutely low, very low, low, medium low, medium, medium
high, high, very high, and absolutely high) based on Chen
(1988) to represent the linguistic terms. Additionally, he pre-
sented the corresponding trapezoidal fuzzy numbers for each
linguistic term. In this paper, we employ Chen’s (1996) nine
translations to convert linguistic terms into upper trapezoidal
fuzzy numbers of IT2TrFNs. A detailed exposition about the
nine translations of linguistic terms into IT2TrFNs has been
presented in Chen (2011a,b, 2012a). In the following com-
parative analysis, we employ Chen’s (1996) nine translations
to convert linguistic terms in Table 2 into trapezoidal fuzzy
numbers, and then we solve the MCDA problem of landfill
sites using the ordinary fuzzy PROMETHEE method.

In addition to Chen’s (1996) translation standards, we
convert the IT2TrFN ratings in Table 3 into mean trape-
zoidal fuzzy numbers. Recall that the IT2TrFN rating of
alternative zi with respect to criterion x j is expressed as
[(aL

1i j , aL
2i j , aL

3i j , aL
4i j ; hL

i j ), (a
U
1i j , aU

2i j , aU
3i j , aU

4i j ; hU
i j )]. The

corresponding mean trapezoidal fuzzy number is defined as
follows: ((aL

1i j + aU
1i j )/2, (aL

2i j + aU
2i j )/2, (aL

3i j + aU
3i j )/2,

(aL
4i j + aU

4i j )/2). Consider the problem of landfill site selec-
tion within an ordinary fuzzy environment. The linguistic
rating data in Table 2 can be expressed as ordinary fuzzy
numbers by using Chen’s (1996) trapezoidal fuzzy numbers
or the mean trapezoidal fuzzy numbers.

We implement the ordinary fuzzy PROMETHEE method,
which relies on Euclidean distances to solve the problem of
landfill site selection. Furthermore, we employ the proposed
interval type-2 fuzzy PROMETHEE methods to handle the
ordinary fuzzy data. Table 6 reveals the obtained results con-
sisting of the partial and complete ranking orders of the
candidate locations using PROMETHEE I and II, respec-
tively. The proposed methods yield the same ranking results
when coping with the rating data using Chen’s (1996) trape-
zoidal fuzzy numbers, the mean trapezoidal fuzzy numbers,
and the IT2TrFNs. Thus, we can conclude that the proposed
interval type-2 fuzzy PROMETHEE I and II methods can
be effectively applied to the ordinary fuzzy environment as
well. When the ordinary fuzzy PROMETHEE I method is
used, the partial ranking results of the candidate locations are
the same as those obtained by using the proposed methods.
Regarding the results yielded by the fuzzy PROMETHEE
II method, the complete order of the candidate locations
is z2 �II z4 �II z1 �II z3, which is similar to the result
(z2 �II z1 �II z4 �II z3) that is obtained using the proposed
methods. As revealed in the comparative result, the pro-
posed methods can be easily adapted to the ordinary fuzzy or
interval type-2 fuzzy environments. The potential of the pro-
posed methods for practical applications is validated using
this comparative analysis.
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Table 6 Comparison analysis of the obtained results

Method Partial ranking Complete ranking

Fuzzy PROMETHEE

Chen’s (1996) trapezoidal fuzzy numbers z1 �I z3, z2 �I z1, z2 �I z3, z2 �II z4 �II z1 �II z3

z2 �I z4, z4 �I z3, z1 R z4

Mean trapezoidal fuzzy numbers z1 �I z3, z2 �I z1, z2 �I z3, z2 �II z4 �II z1 �II z3

z2 �I z4, z4 �I z3, z1 R z4

The proposed method

Chen’s (1996) trapezoidal fuzzy numbers z1 �I z3, z2 �I z1, z2 �I z3, z2 �II z1 �II z4 �II z3

z2 �I z4, z4 �I z3, z1 R z4

Mean trapezoidal fuzzy numbers z1 �I z3, z2 �I z1, z2 �I z3, z2 �II z1 �II z4 �II z3

z2 �I z4, z4 �I z3, z1 R z4

IT2TrFNs z1 �I z3, z2 �I z1, z2 �I z3, z2 �II z1 �II z4 �II z3

z2 �I z4, z4 �I z3, z1 R z4

5 Conclusions

In this paper, we developed interval type-2 fuzzy
PROMETHEE I and II methods to manage the MCDA prob-
lems in the context of IT2TrFNs. This study has extended
the definitions of classical generalized criteria to propose the
signed distance-based generalized criteria based on IT2FSs.
According to the signed distance-based usual criterion,
U-shaped criterion, V-shaped criterion, level criterion, V-
shaped with indifference criterion, and Gaussian criterion, we
can determine the preference function and further derive the
signed distance-based comprehensive preference index by
combining the criterion importance. To evaluate the alterna-
tives using the outranking relation, we employed the concepts
of leaving flows, entering flows, and net flows to develop the
procedures for partial preordering and complete preordering
of the alternatives. The feasibility and applicability of the
proposed interval type-2 fuzzy PROMETHEE I and II meth-
ods have been validated using the practical MCDA problem
of landfill site selection.

Preliminary research on the development of PROMETHEE
methodologies using IT2FSs has been conducted in this
study. The effectiveness of the proposed methods was sup-
ported by the illustrative calculations. Note that this paper
does not intend to replace ordinary fuzzy PROMETHEE
with interval type-2 fuzzy PROMETHEE methods. Because
human judgment is often vague under many conditions, the
available information is sometimes insufficient for determin-
ing an exact definition of the degree of membership for cer-
tain elements. IT2FSs with interval-type membership grades
are appropriate for dealing with such situations. Thus, the
proposed methods can be deemed a complement to the exist-
ing PROMETHEE methodologies. Future studies can focus
on the potential for extending other methodologies of the

PROMETHEE family to the interval type-2 fuzzy environ-
ment.

Appendix

Definition 6.1 Let X be an ordinary finite nonempty set. Let
Int([0, 1]) denote a set of all closed subintervals of [0, 1]. The
mapping A: X → Int([0, 1]) is known as an IT2FS on X . All
IT2FSs on X are denoted by IT2FS(X).

Definition 6.2 If A ∈ IT2FS(X), let A(x) = [AL(x), AU

(x)], where x ∈ X and 0 ≤ AL(x) ≤ AU (x) ≤ 1. The two
T1FSs AL : X → [0, 1] and AU : X → [0, 1] are known
as the lower and upper fuzzy sets, respectively, with respect
to A. If A(x) is convex and defined on a closed and bounded
interval, then A is known as “an interval type-2 fuzzy number
on X”.

Definition 6.3 Let AL(= (aL
1 , aL

2 , aL
3 , aL

4 ; hL
A)) and AU (=

(aU
1 , aU

2 , aU
3 , aU

4 ; hU
A )) be the lower and upper trapezoidal

fuzzy numbers defined on the universe of discourse X , where
aL

1 ≤ aL
2 ≤ aL

3 ≤ aL
4 , aU

1 ≤ aU
2 ≤ aU

3 ≤ aU
4 , 0 ≤ hL

A ≤
hU

A ≤ 1, aU
1 ≤ aL

1 , aL
4 ≤ aU

4 , and AL ⊂ AU . Let ξ ∈ {L ,
U }. The membership function of Aξ for each ξ is expressed
as follows:

Aξ (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

hξ
A(x − aξ

1 )/(aξ
2 − aξ

1 ) for aξ
1 ≤ x ≤ aξ

2 ,

hξ
A for aξ

2 ≤ x ≤ aξ
3 ,

hξ
A(aξ

4 − x)/(aξ
4 − aξ

3 ) for aξ
3 ≤ x ≤ aξ

4 ,

0 otherwise.

(36)
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An IT2TrFN A on X is represented by the following:

A = [AL , AU ]
=
[
(aL

1 , aL
2 , aL

3 , aL
4 ; hL

A), (aU
1 , aU

2 , aU
3 , aU

4 ; hU
A )
]
. (37)

The extension principle (Zadeh 1975) can be employed
to develop fuzzy arithmetic defined as IT2FSs (Aisbett et al.
2010; Gilan et al. 2012). Let ⊕ denote the addition operation,
and let A and B denote IT2FSs. By using Zadeh’s extension
principle, we define an IT2FS for a set of all real numbers
A ⊕ B with the following equation:

(A ⊕ B)(z) = sup
z=x+y

min [A(x), B(y)], (38)

where sup is the supremum. Based on interval-valued arith-
metic, standard arithmetic operations on trapezoidal-shaped
fuzzy numbers can be extended to IT2TrFNs.

Definition 6.4 Let A and B be two nonnegative IT2TrFNs.
A = [(aL

1 , aL
2 , aL

3 , aL
4 ; hL

A), (aU
1 , aU

2 , aU
3 , aU

4 ; hU
A )], and

B = [(bL
1 , bL

2 , bL
3 , bL

4 ; hL
B), (bU

1 , bU
2 , bU

3 , bU
4 ; hU

B )] on X .
The arithmetic operations on A and B are defined as follows:

A ⊕ B =
[(

aL
1 + bL

1 , aL
2 + bL

2 , aL
3 + bL

3 , aL
4 + bL

4 ;
min{hL

A, hL
B}
)
,
(

aU
1 +bU

1 , aU
2 +bU

2 , aU
3 +bU

3 , aU
4 +bU

4 ;
min{hU

A , hU
B }
)]

;
(39)

A�B =
[(

aL
1 − bL

4 , aL
2 − bL

3 , aL
3 − bL

2 , aL
4 − bL

1 ;
min{hL

A, hL
B}
)
,
(

aU
1 −bU

4 , aU
2 −bU

3 , aU
3 −bU

2 , aU
4 − bU

1 ;
min{hU

A , hU
B }
)]

;
(40)

A ⊗ B =
[(

aL
1 · bL

1 , aL
2 · bL

2 , aL
3 · bL

3 , aL
4 · bL

4 ; min{hL
A, hL

B}
)
,(

aU
1 · bU

1 , aU
2 · bU

2 , aU
3 · bU

3 , aU
4 · bU

4 ; min{hU
A , hU

B }
)]

;
(41)

A∅B =
[(

aL
1 /bL

4 , aL
2 /bL

3 , aL
3 /bL

2 , aL
4 /bL

1 ; min
(

hL
A, hL

B

))
,(

aU
1 /bU

4 , aU
2 /bU

3 , aU
3 /bU

2 , aU
4 /bU

1 ; min
(

hU
A , hU

B

))]
, bL

1 , bL
2 ,

bL
3 , bL

4 , bU
1 , bU

2 , bU
3 , bU

4 �= 0;
(42)

q · A = A · q

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(
q · aL

1 , q · aL
2 , q · aL

3 , q · aL
4 ; hL

A

)
, if q ≥ 0,(

q · aU
1 , q · aU

2 , q · aU
3 , q · aU

4 ; hU
A

)]
[(

q · aL
4 , q · aL

3 , q · aL
2 , q · aL

1 ; hL
A

)
,
]

if q ≤ 0;(
q · aU

4 , q · aU
3 , q · aU

2 , q · aU
1 ; hU

A

)]
(43)

A/q =

⎧⎪⎪⎨
⎪⎪⎩

[(
aL

1
q ,

aL
2
q ,

aL
3
q ,

aL
4
q ; hL

A

)
,

(
aU

1
q ,

aU
2
q ,

aU
3
q ,

aU
4
q ; hU

A

)]
if q > 0,

[(
aL

4
q ,

aL
3
q ,

aL
2
q ,

aL
1
q ; hL

A

)
,

(
aU

4
q ,

aU
3
q ,

aU
2
q ,

aU
1
q ; hU

A

)]
if q < 0.

(44)

The multiplication and division operations produce approx-
imate IT2TrFNs for simple computations.
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